Chapter 5: Control Flow 151

is evaluated every time before execution of the loop body. If this expression is true, the statement in the
loop gets executed. In case it is false, the loop terminates and the control of execution is transferred to
the statement following the for loop. The third component i++, is called update expression, and is
executed after every execution of the statement in the loop. The fourth component is the loop-body. The
program sumsql . cpp, finds the sum and the sum of squares of the first 15 positive even integers.

// sumsqgl.cpp: sum of first 15 even numbers and their squares' sum
#include<iostream.h>
void main()
{
int i;
int sum = 0, sum_of_squares = 0;
for(i =-2; i <= 30; i += 2)
{
sum += 1i;
sum_of_squares += i*i;
}
cout << "Sum of first 15 positive even numbers = " << sum << endl;
cout << "Sum of their squares = " << sum_of_squares;

}
Run

Sum of first 15 positive even numbers = 240
Sum of their squares = 4960

In main (), the statement
for(i = 2; 1 <= 30; i += 2)
increments the loop variable i by 2 using the update expression
i+= 2
The body of the loop consists of multiple statements, forming a compound statement. The for loop
counts from 2 to 30 in steps of two. It is just as easy for a loop to count down, from 30t0 2, as illustrated
in the program sumsq2 . cpp.

// sumsq2.cpp: sum of first 15 even numbers and their squares' sum
#include<iostream.h>
void main()
{
int i;
int sum = 0, sum_of_squares =
for(i =30; 1 >=2; 1 -=2)
{

0;

sum += i;

sum_of_squares += i*i;
}
cout << "Sum of first 15 positive even numbers = " << sum << endl;
cout << "Sum of their squares = " << sum_of_squares;

)
Run

sum of first 15 positive even numbers = 240
sum of their squares = 4960

152 Mastering C++

Notice the changes: the value of i is initialized to 30, the test expression involves the >= condition
instead of the <= as in the previous example, and the update expression i -= 2'decrements the value
of i. But the output in this case is identical to the first.

The comma operator is especially useful in for loops. The initialization, test, or update part having
multiple expressions can be be separated by commas. For instance,
for(i = 0, j=-5; i < 25; i++, j--)
{
cout << i << " * << j;

}

Another interesting feature of the for loop is that any of the three components (the initialization,
test and the update components) may be left out, however, the separating semicolons must be present.
The variants of the for loop are shown in Figures 5.4.

Keyword
Initialization expression
Test expression
F F l——b Update expression
s

() For (5 =0; 3 < <25 ; 3++) —» X Nosemicolon here
statement ; —e=mmm... Single-statement body

(i) for (3 =0 ; 3 <15 ; J++) — X No semicolon here
{

statement ;
----- Compound statement body
statement ;
}
(i) for(j =0 ;3 <25 ; j++) ; —>» Hasthesame effectasj=25;

(V) for(i =0 ,5 = 10 ; j < 25; 34+, i--) Mult}plc1n1ualxzat}onand
cout << i < j; multiple update using
comma operator
(V) for(; j < 25; j++)

A ——> Initialization expression
cout << j;

not used
—» Initialization and test
expressions not used

Vi) for(; ; j++)
cout << J:

Vi) for(; ;) T
cout << "I cannot stop."; » Initialization, test, update
expressions not used
Figure 5.4: Variants of for loop
The programnoinit . cpp, prints the first 10 multiples of 5, in which the for loop has only the test
component. :

/ / noinit.cpp: for loop without initialization and updation
#include <iostream.h>

Chapter 5: Control Flow 153

void main{()

{
int 1 = 1;
for(; i<=10;)
{
cout << i*5 << " *;
++i;
}
}
Run

S 10 15 20 25 30 35 40 45 50

In main (), the statement
int i = 1;
is introduced before the for loop. Also, instead of the update expression, i is incremented inside the for
loop body. Note again that the C++ language does not require the user to indent statements in a for
loop. The lines are indented merely for enhancing program appearance (readability).

The nested for loops are used extensively in developing programs for solving matrix multiplica-
tion, numerical analysis, sorting, and searching problems. The program pyramid. cpp illustrates the
use of nested for loops in generating a pyramid of numbers.

/ / pyramid.cpp: constructs pyramid of digits
#include <iostream.h>
void main()
{
int p, m, 4, n;
cout << "Enter the number of lines: *;
cin >> n;
for(p = 1; p <= n; p++)
{
// To print spaces
for(g = 1; q <= n-p; g++)

cout << " "
// To print numbers
m = p;
for(q = 1; q <= p; d++)

{
cout .width(4) -
cout << m++;

m - 2;
or{g = 1; q < pi Q++)

=

-~

cout.width(4);
cout << m—;

}

cout << endl;

154 Mastering C++

Run
Enter the number of lines: §
1
2 3 2
3 4 5 4 3
4 5 6 7 6 5 4
S 6 7 8 9 8 7 6 5

5.7 while loop

The while loop is used when the number of iterations to be performed are not known in advance. The
control flow in thewhile loop is shown in Figure 5.5. The statements in the loop are executed if the test
condition is true and the execution continues as long as it remains true. The program count2.cpp
illustrates the use of the while loop to perform the same function as the for loop.

entry

| false

avwhile (::expressio’::) '

S e 1 i
f 4_ltrue Il
\\ 7
e e e e e e e e e 4
} _-7
statement ;¢ ----" -

Figure 5.5: Control flow in while loop

// count2.cpp: display numbers 1..N using while loop
#include <iostream.h>
void main()
{
int n;
cout << "How many integers to be displayed:
cin >> n:
int 1 = 0;
while(i < n)

{
cout << i << endl;
i+4;
}
}
Run

How many integers to be displayed: 5

B> WP o

Chapter 5: Control Flow 155

The whi 1e loop is often used when the number of times the loop has to be executed is unknown in
advance. It is illustrated in the program averagel.cpp.

// averagel.cpp: find the average of the marks
#include <iostream.h>
void main()

{
int i, sum = 0, count = 0, marks;
cout << "Enter the marks, -1 at the end...\n";
cin >> marks;
while(marks != -1)
{
sum += marks;
count++;
cin >> marks;
}
float average = sum / count;
cout << "The average is " << average;
}
Run
Enter the marks, -1 at the end...
80
15
82
14
=1
The average is 77

The first cin statement, just before the while loop, reads the marks scored in the first subject and
stores in the variable marks, so that the statement inside the loop can have some valid data to operate.
The cin statement inside the loop reads the marks scored in the other subjects one by one. When -1 is
entered, the condition

marks != -1
evaluates to false in the while loop. So, the while loop terminates and the program execution proceeds
with the statement immediately after the while loop, which in the above program is
average = sum / count;
Consider the case when the user inputs -1 as the first marks. The condition in the while statement
evaluates to false, and the statements inside the loop are not executed at all. In this case, the value of
count continues to be zero, so, while computing the average it leads to division by zero causing a
run-time error. This can be prevented by using the if statement as follows:
if(count != 0)
average = sum / count;
The above statement can also be written as
if(count)
average = sum / count;

Any expression whose value is nonzero is treated as true. The program binary . cpp illustrates
such situations. It uses the while construct to convert a binary number to its decimal equivalent. The
shift-left operator << is used for shifting bits stored in a variable in this program.

156 Mastering C++

// bin2deci.cpp: conversion of binary number to its decimal equivalent
#include <iostream.h>
void - main ()
{
int binary, decimal = 0, digit, position = 0;
cout << "Enter the binary number: *;
cin >> binary;
// converting binary to decimal
while(binary)
{
digit = binary % 10; // extract binary bit
decimal += digit << position; // newvalue = oldvalue + 2"position
binary /= 10; // advance to next bit
position += 1; // advance to next bit position
}
cout << "Its decimal equivalent = " << decimal;
}

Run

Enter the binary number: 111
Its decimal equivalent = 7

5.8 do..whilelLoop

Sometimes, it is desirable to execute the body of a while loop at least once, even if the test expression
evaluates to false during the first iteration. In effect, this requires testing of termination expression at
the end of the loop rather than the beginning as in the while loop. So the do-while loop is called a bottom
tested loop. The loop is executed as long as the test condition remains true. The control flow in the
do. .while loop is shown in Figure 5.6. Note the semicolon (;) following the while statement at the
bottom.

entry j
do

e e : 4
}while (conditi<,>n')
statement ; ¢~ - - - false
Figure 5.6: Control flow in do..while loop

The program count3 . cpp illustrates the use of the do. .while loop.

// ceunt3.cpp: display numbers 1..N using do..while loop
#include <iostream h>
void main()
{
‘int n;
cout << "How many integers to be displayed: *;
cin >> n;
int i = 0;

Chapter 5: Control Flow 157

do

cout << i << endl;
i++;
} while(i <n);

}

Run
How many integers to be displayed: S

B W N - O

To realize the usefulness of the do . .while construct, consider the following problem: The user
has to be prompted to press m or £. In reality, the user can press any key other than m or £. In such a
case, the message has to be shown again, and the users should be allowed to re-enter one of the two
options. An ideal construct to handle such a situation is the do..while loop as illustrated in the
program dowhile.cpp.

// dowhile.cpp: do..while loop for asking data until it is valid
#include <iostream.h>
void main ()
{
char inchar;
do
{
cout << "Enter your sex (m/f): *;
cin >> inchar;

} while(inchar != 'm' && inchar != 'f');
if(inchar == 'm’)

cout << "So you are male. good!";
else

cout << "So you are female. good!*;

—~

Run
Eriter your sex (m/f): d
Enter your sex (m/f): b
Enter your sex (m/f): m
So you are male. good!
Inmain (), thedo. .while loop keeps prompting for the user input until the character m for male
or £ for female is entered. Such validation of data is very important while handling sensitive and critical
data.

The solution to certain problems inherently requires data validation only after some operation is
performed as illustrated in the programpal . cpp. It checks if the user entered number is a palindrome
using the do-while construct.

158 Mastering C++

// pal.epp: to check for a palindrome
#include<iostream.h>
void main ()

{
int n, num, digit, rev = 0;
cout << "Enter the number: ";
cin >> num;
n = num;
do
{
digit = num % 10;
rev = rev * 10 + digit;
num /= 10;
} while(num != 0);
cout << "Reverse of the number = " << rev << endl;
if(n == rev)
cout << "The number is a palindrome\n";
else
cout << "The number is not a palindrome\n";
}
Run1i

Enter the number: 123
Reverse of the number = 321
The number is not a palindrome

Run2

Enter the number: 121
Reverse of the number = 121
The number is a palindrome

5.9 break Statement

A break construct terminates the execution of loop and the control is transferred to the statement
immediately following the loop. The term break refers to the act of breaking out of a block of code. The
control flow in for, while, and do-while loop statements with break statement embedded within
their body is shown in Figure 5.7.

for(init; exprl; expr2) while (expr) do
¢ L - = lrue { oeme | ¢ . -te
- N e . ~ ceee ,
if(condition) ’ if(condition) \ if(condition)
break; . - -“ break; __.’ break; - -
~ N -
e \ e \ s e .. _\
} \ } \ } while(condition); .
statement; g statement; J statement; _
«-" <-- 4----" -

Figure 5.7: break statements in loops

Chapter 5: Control Flow 159

The program averagel.cpp discussed earlier has the following code:
cin >> marks;
while(marks != -1)
{
sum += marks;
count++;
cin >> marks;
}
It computes the sum of marks entered by the user and maintains their count. This segment of code can
be replaced by the following piece of code using the break statement:
while(1)
{
cin >> marks;
if(marks == -1)
break;
sum += marks;
count++;
}
Note that it avoids the use of two cin statements. Whenever -1 is input, the condition marks==-1
evaluates to true, and the break statement is executed, which leads to the termination of loop. Control
passes to the statement following the whi le construct. Observe that the condition in the while loop
has been specified as 1 (one) which is nonzero and hence is always true. The condition specifies an
infinite loop, but the break prevents such a situation. The above segment of code can also be replaced
by the following for loop segment:
for(;;)
{
cin >> marks;
if (marks == -1)
break;
sum += marks;
count++;
}

Note that, when test-expression is not mentioned in the for loop, it is implicitly treated as true
causing an infinite loop condition. However, it does not lead to an infinite loop as the break statement
takes over the responsibility of loop termination. In general, the break statement causes control to
pass to the statement following the innermost enclosing for, while, do-while, or switch state-
ment. The same action can also be achieved by using do. .while loop as follows:

do
{
cin >> marks;
if(marks == -1)
break;
sum += marks;
count++;
} while(1);

The program average2.cpp illustrates the use of break in loop ‘statements. It performs the
same operation as that of the program averagel.cpp.

160 Mastering C++

// average2.cpp: find the average of the marks
#include <iostream.h>
void main()
{
int i, sum = 0, count = 0, marks;
cout << "Enter the marks, -1 at the end...\n";
while(1)
{
cin >> marks;
if(marks == -1)
break;
sum += marks;
count++;
}
float average = sum / count;
cout << "The average is " << average;

}

Run

Enter the marks, -1 at the end...
80

1

82

14

=1

The average is 77

5.10 switch Statement

The switch statement provides a clean way to dispatch to different parts of a code based on the value
of asingle variable or expression. It is a multi-way decision-making construct that allows choosing of a
statement (or a group of statements) among several alternatives. The control flow in the switch state-
ment is shown in Figure 5.8. The swi tch statement is mainly used to replace multiple if-else sequence
which is hard-to-read and hatd-to-maintain.

The expression following the switch keyword is an integer valued expression. The value of this
expression decides the sequence of statements to be executed. Each sequence of statements begins
with the keyword case followed by a constant integer. (Note that constant characters may also be
specified). Control is transferred to the statements following the case label whose constant is equal to
the value of the expression in the switch statement. The default part is optional in the switch
statement. The keyword break is used to delimit the scope of the statements under a particular case.

.switch(option)
{
case 1l: cout << "Option # 1 entered";
break;
case 2: cout << "Option # 2 entered";
break;
default: cout << "Invalid option entered*;

Chapter 5: Control Flow 161

In the above segment, if option is 1, then the firstcout will be executed and the control will pass
to the next statement after the switch. Otherwise, the rest of the case statement will be evaluated in
the same way. If none of them match, then the last cout with the default will be executed.

- --

-
. -
switch (e]) RS N
{ RN S \
N \ \

case cl: ,’ if(e==cl) ,'
............ ,

4

break; : ,
- . ‘. 1
L= T L’ if(e==c2) ’
-7 case G2 - ’
LeT o TERTL A Ve ,
4 P ,
I e e L break; L’
' l’ 7
[} ,/
\ ‘\ RN .
‘\ \ default: 4-~ ~ " if(except above cases)
NN P '
NV N
Ny \ | break;
N} oo
statement;

Figure 5.8: Control flow in switch statement

The break statement is essential for the correct realization of the swi tch structure. It causes exit
from the switch structure after the case statements are executed. The break can be omitted in which
case the control falls through to the next case statements. For example, omitting the break statement
in the first case statement will cause both the case 1 and case 2's body to be executed. The
break statements can be omitted when the same operation is to be performed for a number of cases as
illustrated below:

switch(ch)
{

case a
case 'e'
case 'i':
case 'o’
case 'u': ++ vowel;
break;
case ' ': ++ spaces;
break;
default : ++ consonant;
}
Inthe above segment, when the contents of ch is equal to a vowel character, the statement
++vowel;
is executed.

The different cases and the default keyword may appear in any order. The program sex2 . cpp
\llustrates the use of switch construct in replacing the nested if-else statements.

162 Mastering C++

// sex2.cpp: use of switch statement
#include <iostream.h>
void main()
{
char ch;
cout << "Enter your sex (m/f): ";
cin >> ch;
switch(ch)

{
case 'm':
cout << "So you are male. goodi*;
break;
case 'f':
cout << "So you are female. good!*;
break;
default: // if none of the above match any cases
cout << "Error: Invalid sex code!";
}
}
Runi

Enter your sex (m/f): m
So you are male. good!

Run2

Enter your sex (m/f): b
Error: Invalid sex code!

5.11 continue Statement

The cont inue statement skips the remainder of the current iteration and initiates the execution of the
next iteration. When this statement is encountered in a loop, the rest of the statements in the loop are
skipped, and the control passes to the condition, which is evaluated, and if true, the loop is entered
again. The continue statement has the following syntax:

continue;
The control flow in for, while, and do. . while loops with cont inue statement embedded within
their body is shown in Figure 5.9.

P
for (-1 ;i) M| while (71w do
{ d AN I
if (expr) L7 if (expr) ’ if (expr)
continue; == --~-"~ continue; -~ continue; - _
\
) } } while(- " 1;a-

Figure 5.9: Operational flow with continue statement

The program sumpos . cpp accepts an indefinite number of values from the keyboard and prints
the sum of only the positive numbers. It demonstrates the use of break and continue statements.

// sumpos.cpp: sum of positive numbers
$include <iostream.h>
void main()

Chapter 5: Control Flow

d transfers to start o

{
int num, total = 0;
do
{
cout << "Enter a number (0 to quit):
cin >> num;
if(num == 0)
{
cout << "end of data entry." << endl;
break; // terminates loop
}
if(num < 0)
{
cout << "skipping this number." << endl;
continue; // skips next statements an
}
total += num;
} while(1l);
cout << "Total of all +ve numbers is " << total;
}
Run
Enter a number (0 to quit): 10
Enter a number (0 to quit): 20
Enter a number (0 to quit): =%
skipping this number.
Enter a number (0 to quit): 10
Enter a number (0 to quit): O

end of data entry.
Total of all +ve numbers is 40

f loop

163

In do . . whi le loop of the above program, on encountering break, control is transferred outside

the loop. On encountering continue, control is transferred to the while

true (nonzero). Figure 5.10 shows action difference
loops. The break and cont inue statements must be judiciously used and their indiscriminate use

can hamper the clarity of the logic.

P
for(: RN RN)y N
(R - e \

]
e P
if (expression) e
continue; - - - - - -
}
statement;

{

}

for(: Tl

if (expression)
break; <
N

\)
’

statement ;4

Figure 5.10: Control tiow for continue and break

condition which is always
s between break and continue statements in

164 Mastering C++

5.12 goto Statement

The C++ language also provides the much abused goto statement for branching unconditionally to
any part of a program . A debate on whether the use of the goto construct in structured programming
is essential or not, is purely academic, but practically, the goto, is never necessary and therefore is not
used by many programmers. However, there are certain places where the use of got o becomes manda-
tory. For instance, to exit from some deeply nested loops, goto can be used. The general format of a
goto statement is:

goto label;

Here label is an identifier used to label the target statement to which the control should be trans-

ferred. Control may be transferred to any other statement within the current function. The target state-

ment must be labeled and the 1abel must be followed by a colon. The target statement will appear as
label: statement;

Note that the declaration of the 1abel symbol is not required. The program jump . cpp is equiva-
lent to the program sumpos.cpp discussed above. It uses goto statement instead of the break
statement.

// jump.cpp: sum of positive numbers using goto construct
#include <iostream.h>
void main{()
{
int num, total = 0;
do
{
cout << "Enter a number (0 to quit): *;
cin >> num;
if(num == 0)
{
cout << "end of data entry." << endl;
goto dataend; // transfer to dataend position
}
if(num < 0)
{ s
cout << "skipping this number." << endl;
continue; // skips next statements and transfers to start of loop
}
total += num;
} while(1);
dataend: cout << "Total of all +ve numbers is " << total;
}

BRun

Enter a number (0 to quit): 10
Enter a number (0 to quit): 20
Enter ‘a number (0 to quit): =5
skipping this number.

Enter a number (0 to quit): 10
Enter a number (0 to quit): Q

end of data entry.
Total of all +ve numbers is 40

Chapter 5:. Control Flow 165

Any loop (for, while, or do..while) statement can be replaced by an if statement coupled
with a got o statement. But this, of course makes the program unreadable. On the other hand, there are
situations wherein got o statement can make the flow of control more obvious. For example, the follow-
ing segment determines whether two arrays x and y have an element in common or not. The element x
has n elements and y has m elements.

for(i = 0; i < n; i++)

for(j = 0; j <m; J++)
if(x(i]==yl31)
goto found;

// Element not found

found:

// Element found

Except in cases such as the one cited above, the use of the goto statement must be avoided.

It is possible to use goto statement to jump from outside a loop to inside the loop body, but it is
logically incorrect. Hence, goto jumps shown in Figure 5.11 would cause problems and therefore must
be avoided.

X

Figure 5.11: Invalid goto's

5.13 Wild Statements

It is very difficult to detect semantic errors in a program when semicolons are used improperly with
loops. One such case is illustrated in the program age5 . cpp

// ageb.cpp: if statement with wrong usage of syntax
#include <iostream.h>
void main()
{

int age;

cout << "Enter your age: ";

cin >> age;

if(age > 12 && age < 20);

cout << "you are a teen-aged person. good!";

Runt
Enter your age: 14
you are a teen-aged person. good!

166 Mastering C++

Run2

Enter your age: 50
you are a teen-aged person. good!

In main (), the statement
if(age > 12 && age < 20);
effectively does nothing; observe the semicolon after the condition statement. The program displays
the same message for any type of input data. Whether the input age lies in range of teenage or not, it
produces the message
you are a teen-aged person. good!
See Run2 output which shows even 50 year aged person as teen-aged!

Equality Test

The program agecmp . cpp is written for comparing ages of two persons. It prints the illogical message
except for some typical value.

// agecmp.cpp: age comparison
#include <iostream.h>
void main ()
{
int myage = 25, yourage;
‘cout << "Hi! my age is " << myage << endl;
cout << "What is your age ? ";
cin >> yourage;
if (myage = yourage)
cout << "We are born on the same day. Are we twins!";

BRuni

Hi! my age is 25

What is your age ? 25

We are born on the same day. Are we twins!

Run2
Hi! my age is 25

What is your age ? 10
We are born on the same day. Are we twins!

Run3

Hi! my age is 25
What is your age ? Q

The statement in main ()
if(myage = yourage)
has the expression myage = yourage. It assigns the contents of the variable yourage, to myage.
It is evaluated to true, for all nonzero values of yourage and hence, the program prints the same

message except for zero input value. The programmer must be careful while writing the statement, which
checks for the equality of data.

Chapter 5: Control Flow 167

Review Questions

5.1
52

53
54

55

5.6

5.7

58

59

Discuss the need of control flow statements in C++.

What are the differences between break and continue statements ? Develop an interactive pro-
gram which illustrates the differences.

Justify that "goto statement cannot be used to transfer control from outside to inside the loop”

Write an interactive program to print a given integer in the reverse order. For instance, 1234 should
be printed as 4321.

Write an optimized algorithm (program) to print the first N prime numbers, where N is a number
accepted from the keyboard.

Write a program to print the sum of all squares between 1 and N, where N is a number accepted
from the keyboard.ie.,1 + 4 + + (N*N).

Develop a program to find the roots of a quadratic equation. Use switch statements to handle
different values of the discriminant (b*-4*a*c).

State which of the following statements are TRUE or FALSE. Give reasons.

(a) Use of goto helps in developing structured programming.

(b) In i f statement, if the if condition fails, else-part is executed.

(c) The value -1 is treated as false.

(d) The switch statement can have more than one matching cases.

(¢) The break statement terminates the execution of the loop.

(f) Explicit transfer of control from outside the loop to inside is logically correct.

" (g) The use of an expression such as a = b as a test expression is not encouraged.

Write a program to compute the exponential value of a given number x using the series-
e(X) = 14x+x2214x3+...

5.10 Write an interactive program for computing the factorial of a number using the while loop.
5.11 Write a program (o generate reverse pyramid of digits.
5.12 Write an interactive program to compute the cosine of a number using the series:

cos(X)=1-x2/214+x4/4!-x°/6\+...

5.13 Write an interactive program to compute the area of a triangle for the following cases:

a) for 3 sides of a triangle (a, b, andc):

p=a+b+c;

s =(a+b+c)/2;

area = sqrt((double) (s*(s-a)* (s-b)*(s-c)));
b) for right angle triangle: area = (base*height) /2;

5.14 Write a program to print the multiplication table using do..while loop.
5.15 Write an interactive program to draw a histogram of marks scored in different subjects as follows:

subjectl: ak kKA KK kR KKKk AR KAk kkkk*k (50%)

subjectz . *********************************** (72%)

5.16 Write a program to printa conversion chart of various currencies as shown in the table below:

6

Arrays and Strings

6.1 Introduction

An array is a group of logically related data items of the same data-type addressed by a common name,
and all the items are stored in contiguous (physically adjacent) memory locations. For instance, the
statement
int marks(10];

defines an array by the name marks that can hold a maximum of ten elements. The individual elements
of an array are accessed and manipulated using the array name followed by their index. The marks
scored in the first subject is accessed as marks[0] and the marks scored in the 10* subject as
marks (9]. In this case, a sequence of ten integers representing the marks are stored one after another
in memory. A sequence of characters is called string. It can be used for storing and manipulating text
such as words, names, and sentences. The arrays can be used to represent a vector, matrix, etc., as
shown in Figure 6.1.

| i
l

3

< 6 > +“— 3 —» «— 3 —

Vector Matrix Three dimensional array

Figure 6.1: Single and multidimensional arrays

6.2 Operations on Arrays

To see the usefulness of arrays, consider the problem of reading the ages of five persons and comput-
ing the average age. Five variables need to be defined for storing the age of five persons and they have
to be read and processed using distinct statements as illustrated in the program agel.cpp.

// agel.cpp: multiple variables to handle data which are logically same
#include <iostream.h>
void main()
{
int agel, age2, age3, aged4, ageS;
float sum = 0;

Chapter 6: Arrays and Strings

cout << "Enter person 1 age: ";
cin >> agel;
sum += agel;
cout << "Enter person 2 age: ";
cin >> age2;
sum += age2;’
cout << "Enter person 3 age: “;
cin >> age3;
sum += age3;
cout << "Enter person 4 age: ";
cin >> age4;
sum += aged;
cout << *Enter person 5 age: ";
cin >> age5;
sum += ageS;

cout << "Average age = " << sum/5;

}

BRun

Enter person 1 age: 23

Enter person 2 age: 40

Enter person 3 age: 30

Enter person 4 age: 27

Enter person 5 age: 25

Average age = 29

169

The above program uses distinct statements to read and add the age of each person. The resulting

value of summation is stored in the variable sum. Finally, the average age is computed by dividing the
sum by 5. A program written in this style is very clumsy, and difficult to enhance. If there are a large
number of individuals, the number of statements increase proportionately. A more elegant approach is’
to use an array type variable to store the age of persons, and process them using loops as illustrated
in the program age2 . cpp.

// age2.cpp: arrays to handle data which are of the same type

#include <iostream.h>
void main{()

{

int age([5]; // array definition
float sum = 0;
for(int i = 0; i < 5; i++)
{
cout << "Enter person " << i+l << " age: *;
cin >> agelil; // reading array elements
}
for(i = 0; 1 < 5; i++)
sum += agelil]; // array manipulation

cout << "Average age = " << sum/5;

:-

Enter person 1 age: 23

170 Mastering C++

Enter person
Enter person
Enter person 4 age:
Enter person age:
Average age = 29

age:
age:

v W N
o o
~J

Handling arrays involve array definition, array initialization, and accessing elements of an array. In

main (), the statement

int age[5];
defines an array of five elements of integer type with the name age. It reserves 5*sizeof (int)
bytes of memory space for storing the five integer numbers. The statement

cin >> agel[i];
reads each integer value and stores it in the array element indexed by the variable i. Here, the variable
i is known as the array index or subscript and hence, arrays are popularly called subscripted vari-
ables. Note that an array of N elements has indexes in the range 0 to N-1. The statement

sum += age(i];
accesses the contents of the (i+1)™ element of the array age and adds it to the variable sum.

Array Definition
Like other normal variables, the array variable must be defined before its use. The syntax for defining an
array is shown in Figure 6.2.

integer constant
or expression

primitive or
user-defined

Array variable

DataType ArrayName[array_sizel,...;

Figure 6.2: Array definition

In the definition, the array name must be a valid C++ variable, followed by an integer value enclosed
in square braces. The integer value indicates the maximum number of elements the array can hold. The
following are some valid array definition statements:

int marks({100]; // integer array of size 100

float salary([25]; // floating-point array of size 25
char name([50] ; // character array of size 50

int a(10], b([12], c[25]; // defines three arrays

double dl, num{I10]; // defines a variable and double array

The last statement indicates that a normal variable and array can be defined in a single statement. The
representation of an array defined using the statement

int age(5];

is shown in Figure 6.3 by assuming that each element of the array (i.c., each integer) occupies two
bytes.

Chapter 6: Arrays and Strings 171

v/'\ f
age — xx age([0] age — 23 age[0]
xx age([1] 40 age(1])
XX age[2] 30 age[2]
XX age(3] 27 age([3]
xx age[4] 25 age(4]
_,/-H \f
int age[5]; for(i=0; i<5; ++)

cin >> ageli];

Figure 6.3: Storage representation for an array

Accessing Array Elements

Once an array variable is defined, its elements can be accessed by using an index. The syntax for
accessing array elements is shown in Figure 6.4.

integer constant, variable,
or expression

V

ArrayName [index]

Figure 6.4: Accessing an array element

To access a particular element in the array, specify the array name followed by an integer constant
or variable (array index) enclosed within square braces. The array index, indicates the element of the
array, which has to be accessed. For instance, the expression

agel4]
accesses the 5" element of the array age. Note that, in an array of N elements, the first element is
indexed by zero and the last element of an array is indexed by N-1. The loop used to read the elements
of the array is:

for(int i = 0; 1 < 5; i++)

(cout << "Enter person * << i+l << * age: *;

cin >> age(i];

}
The variable i varies from 0 to N-1 (i.e., O to 4 in the above segment). Statements such as,

age[i]++;
can be used to increment the value of the i" item in the array age and hence the following,

age[i] = 11;

age([3] = 25;
are valid statements. Note that, the expression age[i] can also be represented as i[age]; simi-
larly, the expression age[3] is equivalent to 3 [age].

The program nodup . cpp illustrates the manipulation of a vector. It reads a vector and removes all
duplicate elements in that vector. The vector is adjusted after removing all the duplicate elements.

